Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38645021

RESUMO

Background: Infants with frequent viral and bacterial respiratory infections exhibit compromised immunity to routine immunisations. They are also more likely to develop chronic respiratory diseases in later childhood. This study investigated the feasibility of epigenetic profiling to reveal endotype-specific molecular pathways with potential for early identification and immuno-modulation. Peripharal immune cells from respiratory infection allergy/asthma prone (IAP) infants were retrospectively selected for genome-wide DNA methylation and single nucleotide polymorphism analysis. The IAP infants were enriched for the low vaccine responsiveness (LVR) phenotype (Fishers Exact p-value = 0.01). Results: An endotype signature of 813 differentially methylated regions (DMRs) comprising 238 lead CpG associations (FDR < 0.05) emerged, implicating pathways related to asthma, mucin production, antigen presentation and inflammasome activation. Allelic variation explained only a minor portion of this signature. Stimulation of mononuclear cells with monophosphoryl lipid A (MPLA), a TLR agonist, partially reversing this signature at a subset of CpGs, suggesting the potential for epigenetic remodelling. Conclusions: This proof-of-concept study establishes a foundation for precision endotyping of IAP children and highlights the potential for immune modulation strategies using adjuvants for furture investigation.

2.
Int J Mol Sci ; 23(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35563032

RESUMO

Human cytomegalovirus (HCMV) is a beta-herpesvirus carried by ~80% of adults worldwide. Acute infections are often asymptomatic in healthy individuals but generate diverse syndromes in neonates, renal transplant recipients (RTR), and people with HIV (PWH). The HCMV gene UL111a encodes a homolog of human interleukin-10 (IL-10) that interacts with the human IL-10 receptor. Deep sequencing technologies were used to sequence UL111a directly from 59 clinical samples from Indonesian PWH and Australian RTR, healthy adults, and neonates. Overall, 93% of samples contained more than one variant of HCMV, as defined by at least one nonsynonymous variation. Carriage of these variants differed between neonates and adults, Australians and Indonesians, and between saliva and blood leukocytes. The variant alleles of N41D and S71Y occurred together in Australian RTR and were associated with higher T-cell responses to HCMV pp65. The variant P122S was associated with lower levels of antibodies reactive with a lysate of HCMV-infected fibroblasts. L174F was associated with increased levels of antibodies reactive with HCMV lysate, immediate-early 1 (IE-1), and glycoprotein B (gB) in Australian RTR and Indonesians PWH, suggesting a higher viral burden. We conclude that variants of UL111a are common in all populations and may influence systemic responses to HCMV.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Interleucina-10 , Proteínas Virais , Humanos , Austrália , Citomegalovirus/genética , Imunidade , Indonésia , Interleucina-10/genética , Proteínas Virais/genética
3.
Microbiol Spectr ; 9(2): e0002021, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34704798

RESUMO

Human cytomegalovirus (HCMV) is a beta-herpesvirus carried by ∼80% of the world's population. Acute infections are asymptomatic in healthy individuals but generate diverse syndromes in neonates, solid organ transplant recipients, and HIV-infected individuals. The HCMV gene US28 encodes a homolog of a human chemokine receptor that is able to bind several chemokines and HIV gp120. Deep sequencing technologies were used to sequence US28 directly from 60 clinical samples from Indonesian HIV patients and Australian renal transplant recipients, healthy adults, and neonates. Molecular modeling approaches were used to predict whether nine nonsynonymous mutations in US28 may alter protein binding to a panel of six chemokines and two variants of HIV gp120. Ninety-two percent of samples contained more than one variant of HCMV, as defined by at least one nonsynonymous mutation. Carriage of these variants differed between neonates and adults, Australian and Indonesian samples, and saliva samples and blood leukocytes. Two nonsynonymous mutations (N170D and R267K) were associated with increased levels of immediate early protein 1 (IE-1) and glycoprotein B (gB) HCMV-reactive antibodies, suggesting a higher viral burden. Seven of the nine mutations were predicted to alter binding of at least one ligand. Overall, HCMV variants are common in all populations and have the potential to affect US28 interactions with human chemokines and/or gp120 and alter responses to the virus. The findings relied on deep sequencing technologies applied directly to clinical samples, so the variants exist in vivo. IMPORTANCE Human cytomegalovirus (HCMV) is a common viral pathogen of solid organ transplant recipients, neonates, and HIV-infected individuals. HCMV encodes homologs of several host genes with the potential to influence viral persistence and/or pathogenesis. Here, we present deep sequencing of an HCMV chemokine receptor homolog, US28, acquired directly from clinical specimens. Carriage of these variants differed between patient groups and was associated with different levels of circulating HCMV-reactive antibodies. These features are consistent with a role for US28 in HCMV persistence and pathogenesis. This was supported by in silico analyses of the variant sequences demonstrating altered ligand-binding profiles. The data delineate a novel approach to understanding the pathogenesis of HCMV and may impact the development of an effective vaccine.


Assuntos
Anticorpos Antivirais/sangue , Quimiocinas/metabolismo , Citomegalovirus/genética , Citomegalovirus/imunologia , Receptores de Quimiocinas/genética , Proteínas Virais/genética , Ligação Viral , Adulto , Sequência de Aminoácidos/genética , Citomegalovirus/isolamento & purificação , Infecções por Citomegalovirus/patologia , Variação Genética/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Mutação/genética , Ligação Proteica/genética , Receptores de Quimiocinas/imunologia , Transdução de Sinais , Proteínas Virais/imunologia
4.
Ann Clin Transl Neurol ; 7(3): 353-362, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32153140

RESUMO

OBJECTIVE: To develop, test, and iterate a comprehensive neuromuscular targeted gene panel in a national referral center. METHODS: We designed two iterations of a comprehensive targeted gene panel for neuromuscular disorders. Version 1 included 336 genes, which was increased to 464 genes in Version 2. Both panels used TargetSeqTM probe-based hybridization for target enrichment followed by Ion Torrent sequencing. Targeted high-coverage sequencing and analysis was performed on 2249 neurology patients from Australia and New Zealand (1054 Version 1, 1195 Version 2) from 2012 to 2015. No selection criteria were used other than referral from a suitable medical specialist (e.g., neurologist or clinical geneticist). Patients were classified into 15 clinical categories based on the clinical diagnosis from the referring clinician. RESULTS: Six hundred and sixty-five patients received a genetic diagnosis (30%). Diagnosed patients were significantly younger that undiagnosed patients (26.4 and 32.5 years, respectively; P = 4.6326E-9). The diagnostic success varied markedly between disease categories. Pathogenic variants in 10 genes explained 38% of the disease burden. Unexpected phenotypic expansions were discovered in multiple cases. Triage of unsolved cases for research exome testing led to the discovery of six new disease genes. INTERPRETATION: A comprehensive targeted diagnostic panel was an effective method for neuromuscular disease diagnosis within the context of an Australasian referral center. Use of smaller disease-specific panels would have precluded diagnosis in many patients and increased cost. Analysis through a centralized laboratory facilitated detection of recurrent, but under-recognized pathogenic variants.


Assuntos
Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Doenças Neuromusculares/diagnóstico , Doenças Neuromusculares/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Austrália , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Testes Genéticos/normas , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Nova Zelândia , Encaminhamento e Consulta , Adulto Jovem
5.
Am J Hum Genet ; 93(2): 384-9, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23910460

RESUMO

Many individuals with abnormalities of mitochondrial respiratory chain complex III remain genetically undefined. Here, we report mutations (c.288G>T [p.Trp96Cys] and c.643C>T [p.Leu215Phe]) in CYC1, encoding the cytochrome c1 subunit of complex III, in two unrelated children presenting with recurrent episodes of ketoacidosis and insulin-responsive hyperglycemia. Cytochrome c1, the heme-containing component of complex III, mediates the transfer of electrons from the Rieske iron-sulfur protein to cytochrome c. Cytochrome c1 is present at reduced levels in the skeletal muscle and skin fibroblasts of affected individuals. Moreover, studies on yeast mutants and affected individuals' fibroblasts have shown that exogenous expression of wild-type CYC1 rescues complex III activity, demonstrating the deleterious effect of each mutation on cytochrome c1 stability and complex III activity.


Assuntos
Citocromos c1/genética , Citocromos c/genética , Hiperglicemia/genética , Cetose/genética , Mutação , Subunidades Proteicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Pré-Escolar , Consanguinidade , Citocromos c/metabolismo , Citocromos c1/metabolismo , Transporte de Elétrons , Feminino , Fibroblastos/enzimologia , Fibroblastos/patologia , Teste de Complementação Genética , Humanos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/enzimologia , Hiperglicemia/fisiopatologia , Insulina/farmacologia , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Cetose/tratamento farmacológico , Cetose/enzimologia , Cetose/fisiopatologia , Masculino , Mitocôndrias/enzimologia , Mitocôndrias/genética , Modelos Moleculares , Dados de Sequência Molecular , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Pele/enzimologia , Pele/patologia
6.
Am J Hum Genet ; 93(1): 6-18, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23746549

RESUMO

Nemaline myopathy (NEM) is a common congenital myopathy. At the very severe end of the NEM clinical spectrum are genetically unresolved cases of autosomal-recessive fetal akinesia sequence. We studied a multinational cohort of 143 severe-NEM-affected families lacking genetic diagnosis. We performed whole-exome sequencing of six families and targeted gene sequencing of additional families. We identified 19 mutations in KLHL40 (kelch-like family member 40) in 28 apparently unrelated NEM kindreds of various ethnicities. Accounting for up to 28% of the tested individuals in the Japanese cohort, KLHL40 mutations were found to be the most common cause of this severe form of NEM. Clinical features of affected individuals were severe and distinctive and included fetal akinesia or hypokinesia and contractures, fractures, respiratory failure, and swallowing difficulties at birth. Molecular modeling suggested that the missense substitutions would destabilize the protein. Protein studies showed that KLHL40 is a striated-muscle-specific protein that is absent in KLHL40-associated NEM skeletal muscle. In zebrafish, klhl40a and klhl40b expression is largely confined to the myotome and skeletal muscle, and knockdown of these isoforms results in disruption of muscle structure and loss of movement. We identified KLHL40 mutations as a frequent cause of severe autosomal-recessive NEM and showed that it plays a key role in muscle development and function. Screening of KLHL40 should be a priority in individuals who are affected by autosomal-recessive NEM and who present with prenatal symptoms and/or contractures and in all Japanese individuals with severe NEM.


Assuntos
Proteínas Musculares/metabolismo , Músculo Esquelético/patologia , Mutação de Sentido Incorreto , Miopatias da Nemalina/genética , Substituição de Aminoácidos , Animais , Povo Asiático/genética , Estudos de Coortes , Mutação da Fase de Leitura , Genes Recessivos , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Proteínas Musculares/genética , Miopatias da Nemalina/etnologia , Miopatias da Nemalina/patologia , Linhagem , Polimorfismo de Nucleotídeo Único , Índice de Gravidade de Doença , Peixe-Zebra/genética
7.
PLoS One ; 8(2): e58026, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23460918

RESUMO

Human disease incidence attributed to arbovirus infection is increasing throughout the world, with effective control interventions limited by issues of sustainability, insecticide resistance and the lack of effective vaccines. Several promising control strategies are currently under development, such as the release of mosquitoes trans-infected with virus-blocking Wolbachia bacteria. Implementation of any control program is dependent on effective virus surveillance and a thorough understanding of virus-vector interactions. Massively parallel sequencing has enormous potential for providing comprehensive genomic information that can be used to assess many aspects of arbovirus ecology, as well as to evaluate novel control strategies. To demonstrate proof-of-principle, we analyzed Aedes aegypti or Aedes albopictus experimentally infected with dengue, yellow fever or chikungunya viruses. Random amplification was used to prepare sufficient template for sequencing on the Personal Genome Machine. Viral sequences were present in all infected mosquitoes. In addition, in most cases, we were also able to identify the mosquito species and mosquito micro-organisms, including the bacterial endosymbiont Wolbachia. Importantly, naturally occurring Wolbachia strains could be differentiated from strains that had been trans-infected into the mosquito. The method allowed us to assemble near full-length viral genomes and detect other micro-organisms without prior sequence knowledge, in a single reaction. This is a step toward the application of massively parallel sequencing as an arbovirus surveillance tool. It has the potential to provide insight into virus transmission dynamics, and has applicability to the post-release monitoring of Wolbachia in mosquito populations.


Assuntos
Aedes/microbiologia , Aedes/virologia , Infecções por Arbovirus/microbiologia , Infecções por Arbovirus/virologia , Arbovírus/genética , Arbovírus/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Animais , Infecções por Arbovirus/genética , Sequência de Bases , Genoma Viral/genética , Humanos , RNA Ribossômico 16S/genética , Ovinos , Wolbachia/genética
8.
Neuromuscul Disord ; 23(2): 165-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23218673

RESUMO

The clinically and genetically heterogenous foetal akinesias have low rates of genetic diagnosis. Exome sequencing of two siblings with phenotypic lethal multiple pterygium syndrome identified compound heterozygozity for a known splice site mutation (c.691+2T>C) and a novel missense mutation (c.956A>G; p.His319Arg) in glycogen branching enzyme 1 (GBE1). GBE1 mutations cause glycogen storage disease IV (GSD IV), including a severe foetal akinesia sub-phenotype. Re-investigating the muscle pathology identified storage material, consistent with GSD IV, which was confirmed biochemically. This study highlights the power of exome sequencing in genetically heterogeneous diseases and adds multiple pterygium syndrome to the phenotypic spectrum of GBE1 mutation.


Assuntos
Anormalidades Múltiplas/genética , Artrogripose/genética , Exoma/genética , Genótipo , Sistema da Enzima Desramificadora do Glicogênio/genética , Doença de Depósito de Glicogênio/genética , Hipertermia Maligna/genética , Mutação de Sentido Incorreto/genética , Fenótipo , Anormalidades da Pele/genética , Anormalidades Múltiplas/diagnóstico , Sequência de Aminoácidos , Artrogripose/diagnóstico , Austrália , Biópsia , Evolução Fatal , Feminino , Doença de Depósito de Glicogênio/diagnóstico , Humanos , Recém-Nascido , Masculino , Hipertermia Maligna/diagnóstico , Dados de Sequência Molecular , Músculo Esquelético/patologia , Linhagem , Anormalidades da Pele/diagnóstico
9.
J Microbiol Methods ; 91(1): 80-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22849830

RESUMO

Here we demonstrate a cost effective and scalable microbial ecology sequencing platform using the Ion Torrent Personal Genome Machine (PGM). We assessed both PCR amplified 16S rRNA and shotgun metagenomic approaches and generated 100,000+ to 1,000,000+ reads using 'post-light' based sequencing technology within different sized semi-conductor chips. Further development of Golay barcoded Ion Tags allowed multiplex analyses of microbial communities with substantially reduced costs compared with platforms such as 454/GS-FLX. Using these protocols we assessed the bacterial and archaeal dynamics within covered anaerobic digesters used to treat piggery wastes. Analysis of these sequence data showed that these novel methanogenic waste treatment systems are dominated by bacterial taxa, in particular Clostridium, Synergistia and Bacteroides that were maintained as a stable community over extended time periods. Archaeal community dynamics were more stochastic with the key methanogenic taxa more difficult to resolve, principally due to the poor congruence seen between community structures generated either by nested PCR or metagenomic approaches for archaeal analyses. Our results show that for microbial community structure and function analyses, the PGM platform provides a low cost, scalable and high throughput solution for both Tag sequencing and metagenomic analyses.


Assuntos
Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Biota , Metagenômica/métodos , Código de Barras de DNA Taxonômico/economia , Código de Barras de DNA Taxonômico/métodos , Metagenômica/economia , Reação em Cadeia da Polimerase/economia , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/economia , Análise de Sequência de DNA/métodos , Águas Residuárias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...